Synaptic activation of plateaus in hindlimb motoneurons of decerebrate cats.

نویسندگان

  • D J Bennett
  • H Hultborn
  • B Fedirchuk
  • M Gorassini
چکیده

Intracellular recordings were made from hindlimb motoneurons in decerebrate cats to study how synaptic inputs could affect the threshold at which plateau potentials are activated with current injections through the recording microelectrode in the cell body. This study was prompted by recent evidence that the noninactivating inward currents that regeneratively produce the plateau potentials arise (partly) from dendritic conductances, which may be relatively more accessible to synaptic input than to current injected into the soma. Initially, cells were studied by injecting a slow triangular current ramp intracellularly to determine the threshold for activation of the plateau. In cells where the sodium spikes were blocked with intracellular QX314, plateau activation was readily seen as a sudden jump in membrane potential, which was not directly reversed as the current was decreased. With normal spiking, the plateau activation (the noninactivating inward current) was reflected by a steep and sustained jump in firing rate that was not directly reversed as the current was decreased. Importantly, the threshold for plateau activation (at 34 Hz on average) was significantly above the recruitment level (13 Hz on average). When tonic synaptic excitation [excitatory postsynaptic potentials (EPSPs)] was provided either by stretching the triceps surae muscle or by stimulating its nerve at a high frequency, the threshold for plateau activation by intracellular current injection was significantly lowered (by 12 Hz or 5.8 mV on average, without and with QX314, respectively). Conversely, tonic synaptic inhibition [inhibitory postsynaptic potentials (IPSPs)], provided by appropriate nerve stimulation, significantly raised the plateau threshold (by 19 Hz or 7.6 mV on average). These effects were graded with the intensity of tonic EPSPs and IPSPs. Strong enough EPSPs brought the plateau threshold down sufficiently that it was activated by the intracellular current soon after recruitment. A further increase in tonic EPSPs recruited the cell directly, and in this case the plateau was activated at or before recruitment. The finding that synaptic excitation can produce plateau activation below the recruitment level is of importance for the interpretation of its function. With this low-threshold activation, the plateau potentials are likely important in securing an effective recruitment to frequencies that produce significant force generation and would subsequently have no further affect on the frequency modulation, other than to provide a steady depolarizing bias that would help to sustain firing (cf. self-sustained firing). Additional jumps in frequency after recruitment (i.e., bistable firing) would not be expected.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Short-term plasticity in hindlimb motoneurons of decerebrate cats.

Cat hindlimb motoneurons possess noninactivating voltage-gated inward currents that can, under appropriate conditions, regeneratively produce sustained increments in depolarization and firing of the cell (i.e., plateau potentials). Recent studies in turtle dorsal horn neurons and motoneurons indicate that facilitation of plateaus occurs with repeated plateau activation (decreased threshold and ...

متن کامل

Discharge patterns of hindlimb motoneurons during normal cat locomotion.

Long-term recording from single lumbar motoneurons of intact cats revealed activation patterns fundamentally different from those seen in decerebrate preparations. In intact cats, motoneuron bursts showed marked rate modulation without initial doublets. Each unit's frequencygram generally resembled the envelope of the gross electromyogram simultaneously recorded from the corresponding muscle. A...

متن کامل

Amplification and linear summation of synaptic effects on motoneuron firing rate.

The aim of this study was to measure the effects of synaptic input on motoneuron firing rate in an unanesthetized cat preparation, where activation of voltage-sensitive dendritic conductances may influence synaptic integration and repetitive firing. In anesthetized cats, the change in firing rate produced by a steady synaptic input is approximately equal to the product of the effective synaptic...

متن کامل

Tonic presynaptic reduction of monosynaptic Ia EPSPs during fictive locomotion.

The phasic modulation of the H-reflex during human locomotion (1) and the rhythmic fluctuations of intra-axonally recorded primary afferent depolarizations (2) during fictive locomotion in cats suggest a cyclic presynaptic inhibition of group Ia afferents and hence a modulation of synaptic efficacy during locomotion. In the present study the amplitudes of Ia monosynaptic EPSPs were measured in ...

متن کامل

Modulation of spontaneous locomotor and respiratory drives to hindlimb motoneurons temporally related to sympathetic drives as revealed by Mayer waves

In this study we investigated how the networks mediating respiratory and locomotor drives to lumbar motoneurons interact and how this interaction is modulated in relation to periodic variations in blood pressure (Mayer waves). Seven decerebrate cats, under neuromuscular blockade, were used to study central respiratory drive potentials (CRDPs, usually enhanced by added CO2) and spontaneously occ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 80 4  شماره 

صفحات  -

تاریخ انتشار 1998